46 research outputs found

    The intrinsically disordered distal face of nucleoplasmin recognizes distinct oligomerization states of histones

    Get PDF
    The role of Nucleoplasmin (NP) as a H2A-H2B histone chaperone has been extensively characterized. To understand its putative interaction with other histone ligands, we have characterized its ability to bind H3-H4 and histone octamers. We find that the chaperone forms distinct complexes with histones, which differ in the number of molecules that build the assembly and in their spatial distribution. When complexed with H3-H4 tetramers or histone octamers, two NP pentamers form an ellipsoidal particle with the histones located at the center of the assembly, in stark contrast with the NP/H2A-H2B complex that contains up to five histone dimers bound to one chaperone pentamer. This particular assembly relies on the ability of H3-H4 to form tetramers either in solution or as part of the octamer, and it is not observed when a variant of H3 (H3C110E), unable to form stable tetramers, is used instead of the wild-type protein. Our data also suggest that the distal face of the chaperone is involved in the interaction with distinct types of histones, as supported by electron microscopy analysis of the different NP/histone complexes. The use of the same structural region to accommodate all type of histones could favor histone exchange and nucleosome dynamics

    Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast

    Get PDF
    To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac) interfered with establishment of cell polarity, cyproheptadine (Periactin) targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil) interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril) had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol) and pimozide (Orap). Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes

    Resolving Structure and Mechanical Properties at the Nanoscale of Viruses with Frequency Modulation Atomic Force Microscopy

    Get PDF
    Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25–50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called “dissipation channel” in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used

    Structure and non-structure of centrosomal proteins

    Get PDF
    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php

    Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT

    Get PDF
    Chaperonins are large oligomers made up of two superimposed rings, each enclosing a cavity used for the folding of other proteins. Among the chaperonins, the eukaryotic cytosolic chaperonin CCT is the most complex, not only with regard to its subunit composition but also with respect to its function, still not well understood. Unlike the more well studied eubacterial chaperonin GroEL, which binds any protein that presents stretches of hydrophobic residues, CCT recognises in its substrates specific binding determinants and interacts with them through particular combinations of CCT subunits. Folding then occurs after the conformational changes induced in the chaperonin upon nucleotide binding have occurred, throng a mechanism that, although still poorly defined, clearly differs from the one established for GroEL. Although CCT seems to be mainly involved in the folding of actin and tubulin, other substrates involved in various cellular roles are beginning to be characterised, including many WD40-repeat, 7-blade propeller proteins. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies

    The substrate recognition mechanisms in chaperonins

    No full text
    Chaperonins are a family of proteins devoted to assisting the folding of other proteins. They are large oligomers assembled into ring structures that enclose a cavity in which folding takes place. For this process to occur, the chaperonin must first recognize and interact with the unfolded polypeptide, then undergo a conformational change upon nucleotide binding that results in the closure of the cavity which in turn mediates the folding reaction inside the cavity. Although this general mechanism seems to apply to every chaperonin studied so far, there exist two different modes of interaction between the chaperonin and the substrate. The first occurs mainly through the interaction between the exposed hydrophobic residues of the unfolded polypeptides and those of the chaperonin substrate binding site, as elucidated for the chaperonin GroEL from E. coli. The second type of mechanism has been described so far only for the cytosolic chaperonin CCT (Chaperonin Containing TCP-1) and here the interaction seems to be of a more specific nature, involving charged and polar residues in both the chaperonin and the substrate, which interacts with CCT in a structured, quasi-native conformation. Copyright (C) 2004 John Wiley Sons, Ltd

    All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable.

    No full text
    The Hsp60 or chaperonin class of molecular chaperones is divided into two phylogenetic groups: group I, found in bacteria, mitochondria and chloroplasts, and group II, found in eukaryotic cytosol and archaea. Group I chaperonins are generally essential in bacteria, although when multiple copies are found one or more of these are dispensable. Eukaryotes contain eight genes for group II chaperonins, all of which are essential, and it has been shown that these proteins assemble into double-ring complexes with eightfold symmetry where all proteins occupy specific positions in the ring. In archaea, there are one, two or three genes for the group II chaperonins, but whether they are essential for growth is unknown. Here we describe a detailed genetic, structural and biochemical analysis of these proteins in the halophilic archaeon, Haloferax volcanii. This organism contains three genes for group II chaperonins, and we show that all are individually dispensable but at least one must be present for growth. Two of the three possible double mutants can be constructed, but only one of the three genes is capable of fully complementing the stress-dependent phenotypes that these double mutants show. The chaperonin complexes are made up of hetero-oligomers with eightfold symmetry, and the properties of the different combinations of subunits derived from the mutants are distinct. We conclude that, although they are more homologous to eukaryotic than prokaryotic chaperonins, archaeal chaperonins have some redundancy of function
    corecore